Abstract

In this work, we investigated the influence of paper structure on the performance of paper-based analytical devices that are used for blood analysis. The question that we aimed to answer is how the fiber type (i.e., softwood and hardwood fibers) influences the fiber network structure of the paper, which affects the transport of red blood cells (RBCs) in paper. In the experimental design, we isolated the influence of fiber types on the paper structure from all other possible influencing factors by removing the fines from the pulps and not using any additives. Mercury porosimetry was employed to characterize the pore structures of the paper sheets. The results show that papers with a low basis weight that are made with short hardwood fibers have a higher porosity (i.e., void fraction) and simpler pore structures compared with papers made with long softwood fibers. RBC transport in paper carried by saline solution was investigated in two modes: lateral chromatographic elution and vertical flow-through. The results showed that the complexity of the paper's internal pore structure has a dominant influence on the transport of RBCs in paper. Hardwood fiber sheets with a low basis weight have a simple internal pore structure and allow for the easy transport of RBCs. Blood-typing sensors built with low basis weight hardwood fibers deliver high-clarity assays. Softwood fiber papers are found to have a more complex pore structure, which makes RBC transport more difficult, leading to blood-typing results of low clarity. This study provides the principle of paper sheet design for paper-based blood analysis sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call