Abstract

With the depletion of land resources, demands for marine resources mining is increasing, the mining vessels which is known as one of the most important offshore equipment are widely concerned. The motions of wave surges in the marine environment will affect the operation of mining vessels, especially for the heave motion which will cause serious disturbances to the mining vessels during operation, and even the damage of the hull structure and related mining facilities. Hence, it is very necessary to compensate for the heave motion of the mining vessel, and a hydraulic cylinder-based active-passive integrated composite heave compensation system is designed in this paper. Firstly, the structural composition and working principle of the heave compensation system are introduced, and its mathematical model is also established. Secondly, the frequency domain and time domain analysis are carried out using AQWA software to obtain the heave displacement response of the ship under regular and irregular waves of six sea states as the desired compensation displacement. Finally, the controller of the active-passive heave compensation system is designed, and a fuzzy logic control strategy based on Mamdani type is proposed, and the control performance is analyzed. The results show that the accuracy of the fuzzy logic control algorithm is better than the traditional PID control algorithm, and the laws and methods of PID adjustment are obtained, which proves that the fuzzy logic control algorithm has obvious advantages for engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call