Abstract

Flower-like manganese oxide nanospheres as assembled by layered MnO 2 sheets have been successfully fabricated via a facile route using a hydrothermal treatment at 120 °C for 12 h. XRD, FE-SEM, TEM and BET were used to investigate the crystalline structure, morphology, specific surface area, and porosity of the products. The products have a BET surface area of ca. 94.6 m 2/g. Effects of preparation conditions including hydrothermal temperature, reaction time, pH value and kinds of anion were investigated on the morphology, structure and crystalline phase. It was found that control over the morphology and structure of product can be achieved by tuning reaction conditions. On the basis of experimental results, the formation mechanism of the products was investigated and discussed. The manganese oxide nanomaterials showed high catalytic activities for oxidative decomposition of formaldehyde. The crystallographic structure of the products had great influence on the catalytic performance in formaldehyde oxidation. Thereinto, the catalytic activity of the cryptomelane-type MnO 2 was higher than other crystalline manganese oxides below 120 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.