Abstract

Abstract This article describes an efficient control-oriented model of a soft robot made of electroactive polymers. The proposed soft robot is constructed from two flexible links and has a multiphysics dynamic model consisting of both an electrochemical and electromechanical model. The electrochemical model is based on a distributed RC line approach, and the electromechanical model, considering the continuum vibration of the robot, is derived based on Hamilton's principle. The governing equation of the soft robot is solved by means of the Rayleigh-Ritz-Meirovitch substructure synthesis method, and the Laplace operator is used to obtain the transfer function of the soft robot as a 2 by 2 multiple-input multiple-output system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.