Abstract

The 2004 Federal Tier II and California LEV I emission standards for diesel light trucks mandate tailpipe NOx levels of 0.6g∕mi. Active lean NOx catalysts (ALNC or LNC) have been proposed as a means to achieve this standard. These catalysts require the delivery of supplemental hydrocarbons in order to reduce NOx in the lean environment typical of diesel exhaust. In the system studied here, these additional hydrocarbons are injected into the exhaust system downstream of the turbocharger. A control-oriented, gray-box mathematical model is developed for diesel active lean NOx catalysts. The model represents the phenomena relevant to NOx reduction and HC consumption, namely, the catalyst chemical reactions, HC storage in the ALNC, and heat transfer behavior on the basis of an individual exhaust element. As an illustration of how the model may be used, dynamic programing is applied to determine the optimal trade-off of NOx conversion efficiency versus quantity of injected hydrocarbons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.