Abstract

The feasibility of preliminary tailoring of the long chain branched (LCB) polymer through complex flow field was evaluated in the torque rheometer, for the reaction of melt polyolefin elastomer (POE) with peroxides at elevated temperatures. With the compensation of temperature, the strength of complex shear flow could be the only factor affecting the reaction kinetics and mechanism. The results of sample characterization by the rheological and dilute polymer solution methods indicated that the degradation mainly made the length of LCB arm shorter and shorter as the rotational speed increases. Extremely, a certain amount of LCB degraded to be linear chains again due to the scission approaching the branching point at intense mixing condition. One new LCB index (DLCB) was defined from nonlinear oscillatory shear, and a nearly linear relationship between it and long chain branching index (LCBI) was found, which can be a map to quantify LCB level by Fourier Transform Rheology (FTR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call