Abstract

We review experimental and theoretical studies on the design and control of spatiotemporal behavior in chemical systems. A wide range of approaches have been pursued to control spatiotemporal dynamics, from periodic forcing of medium excitability to imposing static and dynamic heterogeneities and geometric constraints on the medium to global feedback with and without delays. We focus on the design and control of spatiotemporal dynamics in excitable and oscillatory media. Experimental examples are taken from the Belousov–Zhabotinsky (BZ) reaction and the oxidation reaction of CO on single crystal Pt, which have become paradigmatic chemical systems for studies of spatiotemporal dynamics. We present theoretical characterizations of spatiotemporal dynamics and control based on the complex Ginzburg–Landau equation as well as models of the BZ and CO/Pt reactions. Controlling spatiotemporal dynamics allows the realization of specific modes of behavior or may give rise to completely new types of behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.