Abstract

The viscoelasticity of a fluid was tuned with the Faradaic reaction of (11-ferrocenylundecyl)trimethylammonium bromide (FTMA), a "redox-switchable" surfactant. An aqueous solution of the reduced form of FTMA exhibited a remarkable viscoelasticity in the presence of sodium salicylate (NaSal) because of the formation of three-dimensional entanglement of wormlike micelles. Electrolytic oxidation of FTMA caused the viscosity of the system to dramatically decrease and the elasticity to disappear. This drastic decrease in viscoelasticity arose from the disruption of wormlike micelles. This novel electrorheological phenomenon is expected to be applicable to ink for inkjet printers, the electrochemically controlled release of substances entrapped in wormlike micelles of FTMA, and fluid flow rate control using electric signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.