Abstract

Crosslinked poly(meth)acrylate polymers with a variety of morphologies were synthesized with two steps. In the first step, a microporous glass membrane (Shirasu Porous Glass, SPG) was employed to prepare uniform emulsion droplets by applying an adequate pressure to the monomer phase, which was composed of the ADVN initiator, solvent of toluene or heptane or their mixture, and a mixture of (meth)acrylate monomers. The droplets were formed continuously through the membrane and suspended in the aqueous solution, which contained a PVA-127 suspending agent, SLS emulsifier, and NaNO2 inhibitor to suppress the nucleation of secondary particles. SPG pore sizes of 0.90, 5.25, and 9.25 μm were used. Then the emulsion droplets were polymerized at 343 K with a rotation rate 160 rpm for 24 h. The (meth)acrylate monomers 2-ethylhexyl acrylate (2-EHA), 2-ethylhexyl methacrylate (2-EHMA), cyclohexyl acrylate (CHA), methyl methacrylate (MMA), lauryl acrylate (LA), and lauryl methacrylate (LMA) were used in this research. The influences of the ratios of the monomer and crosslinking agent EGDMA, the amount of diluents, the monomer type on the polymer particle morphology, the swelling degree, and the polymer particle size were investigated. It was found that an increase in the concentrations of EGDMA and heptane resulted in higher coarse porous spheres and smaller polymer particle sizes. A coefficient with a variation close to 10%, or a standard deviation of about 4, was obtained. The capacity of these spheres as solvent absorption materials was examined. The highest swelling degrees of heptane and toluene were obtained when LA was employed as the monomer with 30% (by weight) of EGDMA and 70% (by weight) of heptane as an inert solvent. The highest capacity of the solvent absorption was obtained when using a polymer particle size of 4.81 μm, as prepared by SPG pore size 0.9 μm. The polymer particles were able to absorb aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, and a mix of aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents, such as toluene and heptane. The capacity of solvent absorption for the aromatic hydrocarbon solvents was higher than for the aliphatic hydrocarbon solvents. In addition, the particles did not rupture or collapse after absorption in solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4038–4056, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.