Abstract

This paper proposes an approach to algorithmically synthesize control strategies for discrete-time nonlinear uncertain systems based on reachable set computations using the ellipsoidal calculus. For given ellipsoidal initial sets and bounded ellipsoidal disturbances, the proposed algorithm iterates over conservatively approximating and LMI-constrained optimization problems to compute stabilizing controllers. The method uses first-order Taylor approximation of the nonlinear dynamics and a conservative approximation of the Lagrange remainder. An example for illustration is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.