Abstract

The precise control of quantum systems will play a major role in the realization of atomtronic devices. As in the case of electronic systems, a desirable property is the ability to implement switching. Here we show how to implement switching in a model of dipolar bosons confined to three coupled wells. The model describes interactions between bosons, tunneling of bosons between adjacent wells, and the effect of an external field. We conduct a study of the quantum dynamics of the system to probe the conditions under which switching behavior can occur. The analysis considers both integrable and non-integrable regimes within the model. Through variation of the external field, we demonstrate how the system can be controlled between various “switched-on” and “switched-off” configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.