Abstract

Nonlinear stochastic complex networks in ecological systems can exhibit tipping points. They can signify extinction from a survival state and, conversely, a recovery transition from extinction to survival. We investigate a control method that delays the extinction and advances the recovery by controlling the decay rate of pollinators of diverse rankings in a pollinators-plants stochastic mutualistic complex network. Our investigation is grounded on empirical networks occurring in natural habitats. We also address how the control method is affected by both environmental and demographic noises. By comparing the empirical network with the random and scale-free networks, we also study the influence of the topological structure on the control effect. Finally, we carry out a theoretical analysis using a reduced dimensional model. A remarkable result of this work is that the introduction of pollinator species in the habitat, which is immune to environmental deterioration and that is in mutualistic relationship with the collapsed ones, definitely helps in promoting the recovery. This has implications for managing ecological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call