Abstract

Ticks (Acari: Ixodidae) are considered to be the most important vectors of disease-causing pathogens in domestic and wild animals, and emerging and re-emerging tick-borne diseases (TBD) exert an enormous impact on them. Wild ungulates are hosts for a wide variety of tick species and tick-borne pathogens that affect human and animal health. Consequently, the control of tick infestations and tick-borne pathogen prevalence is essential in some regions. Acaricides and animal management or culling have been used for the control of tick infestations and TBD, but tick vaccines constitute the best alternative to reduce the impact of acaricides on tick resistance and the environment. Previous results of controlled vaccination trials have shown that the Q38 Subolesin/Akirin chimera containing conserved protective epitopes could be a candidate universal antigen to control multiple tick species infestations. Thus, vaccination trials are necessary to validate these results under field conditions. In this study, we characterized the effect of Q38 vaccine on a wild population of European roe deer (Capreolus capreolus) in the Andalusian roe deer Reference Station (Junta de Andalucía, Cádiz, Spain). In this location, roe deer suffer especially severe parasitic conditions in some periods and commercial pesticides and ixodicides that are authorized to control ticks without specificity are frequently applied in the field, posing a threat to the environment. Animals vaccinated over a three-year period showed an antibody response to the vaccine antigen and a reduction in tick infestations by multiple species including Hyalomma marginatum, H. lusitanicum, Rhipicephalus bursa and Ixodes ricinus previously identified in roe deer, when compared to untreated controls. These results suggest the efficacy of Q38 for the control of tick infestations in wildlife.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.