Abstract

The article presents the recent research development in controlling molecular and microstructures of thin ferroelectric polymer films for the application of non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on ferroelectric polymers particularly emphasizing on the device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) diodes and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). Key material and process issues for optimizing the memory performance in each device architecture and thus realizing non-volatile ferroelectric polymer memory are in details discussed, including the control of crystal polymorphs, film thickness, various hetero-material interfaces between ferroelectric polymer and either metal or semiconductor, crystallization and crystal orientation. The current effort of micro and nanopatterning techniques is also addressed for high density and flexible memory arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call