Abstract
ABSTRACT N‐substituted maleimides polymerize in the presence of a radical initiator to give polymers with excellent thermal stabilities and transparency. In this study, we synthesized various maleimide copolymers with styrenes and acrylic monomers to control their thermal and mechanical properties by the introduction of bulky substituents and intermolecular hydrogen bonding. Three‐component copolymers of N‐(2‐ethylhexyl)maleimide in combination with styrene, α‐methylstyrene (MSt), or 1‐methylenebenzocyclopentane (BC5) as the styrene derivatives, and n‐butyl acrylate, 2‐hydroxyethyl acrylate, 4‐hydroxybutyl acrylate, or acrylic acid as the acrylic monomers were prepared by radical copolymerization. These copolymers were revealed to exhibit excellent heat resistance by thermogravimetric analysis. Glass transition temperatures increased by the introduction of bulky MSt and BC5 repeating units. The mechanical properties of the copolymer films were improved by the introduction of intermolecular hydrogen bonding. Optical properties, such as transmittance, refractive index, Abbe number, and birefringence, were determined for the copolymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1569–1579
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.