Abstract

Thermal stability, crystallization, morphological development, subsequently melting, and crystallinity control of a syndiotactic 1,2-polybutadiene sample were carefully carried out by thermogravimetry (TGA), polarized optical microscopy (POM), differential scanning calorimetry (DSC), temperature-modulated differential scanning calorimetry (TMDSC), and wide-angle X-ray diffraction (WAXD), respectively. The experiments indicate that thermal cross-linking reaction rates under nitrogen protection and in air are different for this polymer at temperature above 155 °C. Under nitrogen protection, the thermal cross-linking reaction rate is delayed and the mechanism of melt crystallization obtained from the DSC results is in good accordance with that from POM observation. TMDSC results indicate that melting–recrystallization–melting model is more proper to explain the double melting events of this sample. At the same time, the evolution of the degree of crystallinity as the function of the time was investigated by WAXD profiles for the samples firstly crystallized at 145 °C for 1 h and then kept at 163 °C mediated between the temperatures of the double peaks. It shows that as prolonging the annealing time at 163 °C thermal cross-linking reactions possibly occur, leading to gradual reduction of the apparent crystallite sizes, evaluated by Scherrer equation and the degree of crystallinity. The changing sequence of the relative intensity of the stronger four diffraction peaks with time due to thermal cross-linking reactions is (111)/(201) > (210) > (010) > (200)/(110). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2885–2897, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.