Abstract

Graft polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) onto polyurethane (PU) was conducted to improve its water compatibility, tensile mechanical strength, shape memory, and low-temperature flexibility properties, as well as to control its water vapor permeability (WVP). Control PUs containing free poly(PEGA) were also prepared to compare with the poly(PEGA)-grafted PUs. The water compatibility of PU notably improved due to the grafting of poly(PEGA) based on water contact angle results. The soft segment melting temperature and glass transition temperature were not changed with the increase in the PEGA content. The tensile strength of PU sharply increased due to the grafting of poly(PEGA), whereas the free poly(PEGA) in the control PUs did not cause a similar increase. The maximum strain of PU was not affected by the grafting of poly(PEGA). The shape recovery at 0°C significantly increased compared with the unmodified PU. The low-temperature flexibility of PU improved, and the WVP through the PU membrane was reduced by the grafting of poly(PEGA) onto PU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.