Abstract

The thymus gland is a central lymphoid organ in which bone marrow-derived T cell precursors undergo maturation, eventually leading to the migration of positively selected thymocytes to the T-dependent areas of peripheral lymphoid organs. This process occurs under the influence of the thymic microenvironment, by means of secretory polypeptides and cell-cell contacts. The thymic microenvironment is a tridimensional cellular network composed of epithelial cells (its major component), macrophages, dendritic cells, fibroblasts and extracellular matrix elements. The epithelial reticulum is a heterogeneous tissue, in which a particular lymphoepithelial structure has been isolated in vitro: the thymic nurse cell complex, which possibly creates particular microenvironmental conditions for thymocyte differentiation. Additionally, thymic nurse cells are useful tools to study mechanisms involved in intrathymic T cell migration, including neuroendocrine influences. Previous data showed that thymic hormonal function can be modulated by hormones and neuropeptides, including growth hormone. Interestingly, GH acts pleiotropically on the thymic epithelium increasing cell growth and expression of extracellular matrix ligands and receptors, the latter resulting in an enhancement of thymocyte adhesion to the epithelial cells and thymocyte release from thymic nurse cells. The role of GH on thymus development is further stressed by the findings obtained with GH-deficient dwarf mice. Besides the precocious decline in serum thymulin found in these animals, a progressive thymic hypoplasia occurs, with decreased numbers of CD4+CD8+thymocytes, both defects being largely restored by long-term GH treatment. The effects of GH in the thymus are apparently mediated by IGF-1. Enhancement of thymulin secretion induced by GH, as well as the stimulation of thymocyte adhesion to thymic epithelial cells can be prevented in vitro by treatment with antibodies for IGF-I or IGF-I receptor. Moreover, in both systems IGF-I alone can yield similar effects. Also, the enhanced concanavalin-A mitogenic response and IL-6 production by thymocytes observed in GH-treated mice can be detected in animals treated with IGF-I. Lastly, mouse substrains selected for high or low IGF-I circulating levels exhibited differential thymus developmental patterns correlating with IGF-I levels. A further conceptual aspect concerning the GH-IGF-I-mediated control of thymus physiology is the recent demonstration of an intrathymic production of these molecules, leading to the hypothesis that, in addition to the classical endocrine pathway, GH-IGF-I-mediated paracrine and autocrine pathways may also be implicated in the control of thymus physiology. In any case, such control is exerted pleiotropically, with modulation in the expression of several genes in different cell types of the organ. In this respect, it is exciting to imagine a role of GH-IGF-I loops in shaping the intrathymically generated T cell repertoire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.