Abstract

We study control of the temporal profile of the local electric field in the vicinity of a small doped semiconductor or metal nanostructure. Unlike in the case of control in a gas or liquid phase, the collective response of electrons in the nanostructure may significantly enhance different frequency components of the external field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local field. The changes in the amplitude and phase of the local field are studied using linear response theory within the random phase approximation. The inverse problem of finding the external electromagnetic field to generate an arbitrary target temporal profile of the local field, including the time-dependent polarization of the field, is considered and solved. We systematically study the pulse enhancement and shape distortion effects for a set of control pulses of various shapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.