Abstract

The effects of patterning highly anisotropic repeating structures in soft magnetic thin films have been examined. Arrays of wires with equal mark/space ratios were patterned in resist using optical lithography. 100 nm thick Ni/sub 80/Fe/sub 15/Mo/sub 5/ films were partially or completely etched using broad beam ion milling to assess the dependence of magnetic properties on the degree of interconnection between the wires. These structures show a progressive increase in coercivity and a transition between single and two-stage switching with increasing milling depth. A similar nanopatterning technique has been applied to unpinned (Ni/sub 80/Fe/sub 20//Cu/Ni/sub 80/Fe/sub 20/) spin valve structures in order to enhance the coercivity of one of the ferromagnetic layers; the increased coercivity induced by patterning changes the natural similarity of the magnetic layers and the completed structure exhibits a small spin valve response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.