Abstract

We theoretically investigated a hybrid absorptive–dispersive optical bistability and multistability behaviour in a three-level V-type system using a microwave field driving a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the intensity and the frequency detuning of the coupling field as well as the intensity of the microwave field can affect the OM behaviour dramatically, which can be used to control the transition from OM to OB or vice versa without need to resort the effect of the quantum interference. The effects of the phase, the quantum interference and the atomic cooperation parameter on the OM are also studied. Our scheme may be used for building more efficient all-optical switches and logic-gate devices for optical computing and quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call