Abstract
A supersonic flow in a channel with a variable cross section is numerically simulated in the case of ethylene injection along the channel under the action of a jet generating a throttling effect. The averaged Navier–Stokes equations closed by the $$k$$ – $$\varepsilon$$ turbulence model are solved. Ethylene combustion is modeled with the use of one reaction. The results are compared with experimental data on the pressure distribution over the channel wall. It is found that gas-dynamic pulses produce an irreversible effect on the flow structure. The formation of a transonic flow region and its structure are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.