Abstract
The characteristics of low frequency waves in the presence of E⃗ × B⃗ rotation of a tandem mirror plasma are investigated using the Fraunhofer diffraction method. The observed dispersion relations are in good agreement with those of drift waves including a Doppler shift due to the E⃗ × B⃗ rotation velocity. The effect of the radial electricfield on the drift waves is studied quantitatively by applying a bias voltage to the end plates of the tandem mirror. The fluctuation level is observed to depend on the radial electric field Er. The fluctuation has a maximum value when Er ≃ 0 and decreases with increasing Er, regardless of its sign. The radial confinement time estimated from the particle balance equation decreases as the fluctuation level increases. The dependence of the fluctuation level agrees with that evaluated from the quasi-linear theory of drift wave turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.