Abstract
The SOLAS Air–Sea Gas Exchange (SAGE) experiment was conducted in Sub-Antarctic waters off the east coast of the South Island of New Zealand in the late summer of 2004. This mesoscale iron enrichment experiment was unique in that chlorophyll a (chl a) and primary productivity were only 2× OUT stations values toward the end of the experiment and this enhancement was due to increased activity of non-diatomaceous species. In addition, this enhancement in activity appeared to occur without a significant build up of particulate organic carbon. Picoeukaryotes (<2 μm) were the only members of the phytoplankton assemblage that showed a statistically significant increase, a doubling in biomass. To better understand the controls of phytoplankton growth and biomass, we present results from a series of on-deck perturbation experiments conducted during SAGE. Results suggest that the pico-dominated phytoplankton assemblage was only weakly inhibited by iron. Diatoms with high growth rates comprised a small (<1%) fraction of the phytoplankton assemblage, were likely iron limited, and potentially further limited by silicic acid and therefore did not significantly contribute to bloom dynamics. On deck experiments and comparison of SAGE with other iron addition experiments suggested that neither light availability nor deep mixed layers limited phytoplankton growth. Although no substantial increase in grazing rate or specific phytoplankton growth rate was detected, microzooplankton biomass doubled over SAGE as a result of an increase in cell size. The importance of microzooplankton grazing was highlighted by the fact that they were capable of consuming 15–49% of the total phytoplankton production per day. Removal was highest on eukaryotic picophytoplankton production with a mean value of 72% (29–143%). Patch dilution played an important role during SAGE; the mean patch net algal growth:dilution rate, 1.13 (0.4–2.2) was the lowest reported for a mesoscale iron enrichment experiment. Phytoplankton biomass, estimated by chlorophyll a, only accumulated when phytoplankton growth exceeded grazing and when net algal growth exceeded dilution rate. The SAGE results highlight the function of the smallest phytoplankton size fraction described by the ecumenical Iron Hypothesis. Thus, adding iron to HNLC-low silicic acid regions during certain times of the year may simply transfer more carbon through the microbial food web. A primary implication of this study is that any iron-mediated gain in fixed carbon with this set of environmental conditions has a high probability of being recycled in surface waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.