Abstract

The effect of NH4OH/Cu2+ in a copper-acetate solution on the properties of ion-exchanged Cu-ZSM-5 catalysts in the selective catalytic reduction of NO by NH3 (NO–NH3 SCR) has been studied. The temperature programmed desorption of ammonia (NH3-TPR) on Cu-ZSM-5 and the ammonia adsorption–desorption dynamics at 75–300 °C were studied to identify and quantify the nature of acid sites and ammonia desorption heat of Cu-ZSM-5. The Cu-ZSM-5 catalysts containing Cu-structures with extra-lattice oxygen were active in the low-temperature SCR, whereas those with isolated Cu2+ ions were active in the high-temperature SCR. It was shown that Cu-structures with extra-lattice oxygen were generated during the ion exchange of H-ZSM-5 with a water-ammonia solution of copper-acetate where the NH4OH/Cu2+ ratio was in the range of 6–15. Isolated Cu2+ ions were produced in the ion-exchange mode with the ammonia-free solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.