Abstract

This work aims to explore the use of lightweight magnesium alloys as an advanced composite material in conjunction with lightweight thermoplastic materials, such as ultrahigh-molecular-weight polyethylene (UHMWPE). High throughput, environmentally friendly, atmospheric plasma treatment methods were used to control the interfacial properties and improve the adhesion behavior of metallic/UHMWPE composites. Helium-oxygen dielectric barrier discharges were used, and the plasma-activated UHMWPE surfaces were characterized through analytical and mechanical characterization methods. Oxygen content on the treated polymer surfaces increased 18.1–36.0%. A reduction in silicon content combined with characterization through microscopy reveal a preference for the attack of the matrix over the polyethylene fibers. Wetting angles for the treated samples decreased as much as 53.7%. Treated UHMWPE/Mg hybrid samples exhibited lap shear strengths up to 113.7% greater than the control. Both the plasma-induced surface functionalization with oxygen-containing polar groups (carboxyl, carbonyl, and hydroxyl groups) and the preferential mild etching of the polymer matrix over the fibers lead to the improvement in adhesion. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.