Abstract
Controlling the density and pressure of the background gas in the beam lines of thick-liquid heavy-ion fusion chambers is of paramount importance for the beams to focus and propagate properly. Additionally, transport and deposition of debris material onto metal beam-tube surfaces may reduce the breakdown voltage and permit arcing with the beam. The strategy to control the gas pressure and the rate of debris deposition is twofold. First, the cool thick-liquid jet structures will mitigate the venting to the beam tubes. The ablation and venting of debris through thick-liquid structures must be modelled to predict the quantities of debris reaching the beam ports. TSUNAMI calculations have been performed to estimate the mass and energy flux histories at the entrance of the beam ports in a 9×9 HYLIFE pocket geometry. Secondly, additional renewable shielding will be interposed in the beam tubes themselves. Thick-liquid vortexes are planned to coat the inside of the beam tubes and provide a quasi-continuous protection of the beam-tube walls up to the final focus magnets. A three-component molten salt, flinabe, with a low melting temperature and vapor pressure, has been identified as a candidate liquid for the vortexes. The use of flinabe may actually eliminate the necessity of mechanical shutters to rapidly close the beam tubes after target ignition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.