Abstract

The Gyrover is a single-wheel gyroscopically stabilized mobile robot developed at Carnegie Mellon University. An internal pendulum serves as a counter weight for a drive motor that causes fore/aft motion, while a large gyroscope on a tilt mechanism provides for lateral balance and steering actuation. In this paper, we develop a detailed dynamic model for the Gyrover and use this model in an extended Kalman filter to estimate the complete state. A linearized version of the model is used to develop a state feedback controller. The design methodology is based on a semi-definite programming procedure which optimizes the stability region subject to a set of linear matrix inequalities that capture stability and pole placement constraints. Finally, the controller design combined with the extended Kalman filter are verified on the robot prototype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call