Abstract

Atmospheric low-loss delivery of high-energy long wavelength picosecond duration pulses over multiple Rayleigh ranges will be dominated by the recently identified many-body coherent excitation-induced dephasing and avalanche based memory effects. We numerically illustrate this physics with pulse trains where prepulses gradually accumulate plasma preparing the medium for the main high-power pulse. The control over the nonlinear dynamics makes it possible to effectively avoid pulse splitting in the first few hundred meters, and deliver a wave packet with an improved spatiotemporal profile downstream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call