Abstract

In this paper we investigate the optimal control approach for the active control of the circular cylinder wake flow considered in the laminar regime (Re = 200). The objective is the mean drag minimization of the wake where the control function is the time harmonic angular velocity of the rotating cylinder. When the Navier-Stokes equations are used as state equation, the discretization of the optimality system leads to large scale discretized optimization problems that represent a tremendous computational task. In order to reduce the number of state variables during the optimization process, a Proper Orthogonal Decomposition (POD) Reduced Order Model (ROM) is then derived to be used as state equation. Since the range of validity of the POD ROM is generally limited to the vicinity of the design parameters in the control parameter space, we propose to use the Trust-Region Proper Orthogonal Decomposition (TRPOD) approach, originally introduced by Fahl (2000), to update the reduced order models during the optimization process. Benefiting from the trust-region philosophy, rigorous convergence results guarantee that the iterates produced by the TRPOD algorithm will converge to the solution of the original optimization problem defined with a high a fidelity model. A lot of computational work is indeed saved because the optimization process is now based only on low-fidelity models. When the TRPOD is applied to the wake flow configuration, this approach leads to a relative mean drag reduction of 30% for reduced numerical costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.