Abstract
AbstractSequential deposition of the active layer in organic solar cells (OSCs) is favorable to circumvent the existing drawbacks associated with controlling the microstructure in bulk‐heterojunction (BHJ) device fabrication. However, how the processing solvents impact on the morphology during sequential deposition processes is still poorly understood. Herein, high‐efficiency OSCs are fabricated by a sequential blade coating (SBC) through optimization of the morphology evolution process induced by processing solvents. It is demonstrated that the device performance is highly dependent on the processing solvent of the upper layer. In situ morphology characterizations reveal that an obvious liquid–solid phase separation can be identified during the chlorobenzene processing of the D18 layer, corresponding to larger phase separation. During chloroform (CF) processing of the D18 layer, a proper aggregation rate of Y6 and favorable intermixing of lower and upper layers results in the enhanced crystallinity of the acceptor. This facilitates efficient exciton dissociation and charge transport with an inhibited charge recombination in the D18/CF‐based devices, contributing to a superior performance of 17.23%. These results highlight the importance of the processing solvent for the upper layer in the SBC strategy and suggest the great potential of achieving optimized morphology and high‐efficiency OSCs using the SBC strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.