Abstract

The catalytic performance of vanadyl pyrophosphate (VPP) catalysts in the oxidation of n-butane to maleic anhydride (MA) depends strongly on the display of the active and selective {0 0 1} faces, that may be controlled during the preparation of VOHPO4·0.5H2O precursor by solvothermal technique using C2 to C4 alkanoic alcohols. Intercalated metastable vanadyl-alkyl-phosphates were formed when linear alcohols (ethanol, n-butanol) were used, at variance with iso-alcohols. {0 0 1} platelets of VOHPO4·0.5H2O yielded {2 0 0} platelets to (VO)2P2O7 in nitrogen or in situ in the reactor, as revealed by structural analyses. The catalysts prepared in ethanol or n-butanol in situ activated at 440 °C were more active and selective to MA than in iso-alcohols, but if the equilibration was performed at 380 °C the influence of alcohol was mitigated. The highest MA yield was obtained with the ethanol-derived catalyst, which exhibited the smallest platy crystallites of (VO)2P2O7, as well as surface V5+ species as seen by XPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.