Abstract

The experimental demonstration of the modification of the Casimir force between a gold coated sphere and a single-crystal Si membrane by light pulses is performed. The specially designed and fabricated Si membrane was irradiated with 514 nm laser pulses of 5 ms width in high vacuum leading to a change of the charge-carrier density. The difference in the Casimir force in the presence and in the absence of laser radiation was measured by means of an atomic force microscope as a function of separation at different powers of the absorbed light. The total experimental error of the measured force differences at a separation of 100 nm varies from 10 to 20% in different measurements. The experimental results are compared with theoretical computations using the Lifshitz theory at both zero and laboratory temperatures. The total theoretical error determined mostly by the uncertainty in the concentration of charge carriers when the light is incident is found to be about 14% at separations less than 140 nm. The experimental data are consistent with the Lifshitz theory at laboratory temperature, if the static dielectric permittivity of high-resistivity Si in the absence of light is assumed to be finite. If the dc conductivity of high-resistivity Si in the absence of light is included into the model of dielectric response, the Lifshitz theory at nonzero temperature is shown to be experimentally inconsistent at 95% confidence. The demonstrated phenomenon of the modification of the Casimir force through a change of the charge-carrier density is topical for applications of the Lifshitz theory to real materials in fields ranging from nanotechnology and condensed matter physics to the theory of fundamental interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call