Abstract

We investigate the exciton fine structure in atomically thin WSe_{2}-based van der Waals heterostructures where the density of optical modes at the location of the semiconductor monolayer can be tuned. The energy splitting Δ between the bright and dark exciton is measured by photoluminescence spectroscopy. We demonstrate that Δ can be tuned by a few meV as a result of a significant Lamb shift of the optically active exciton that arises from emission and absorption of virtual photons triggered by the vacuum fluctuations of the electromagnetic field. We also measure strong variations of the bright exciton radiative linewidth as a result of the Purcell effect. All these experimental results illustrate the strong sensitivity of the excitons to local vacuum field fluctuations. We find a very good agreement with a model that demonstrates the equivalence, for our system, of a classical electrodynamical transfer matrix formalism and quantum-electrodynamical approach. The bright-dark splitting control we demonstrate here in the weak light-matter coupling regime should apply to any semiconductor structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.