Abstract
Functionalization of semiconductor surfaces with organic moieties can change the charge distribution, surface dipole, and electric field at the interface. The modified electric field will shift the semiconductor band-edge positions relative to those of a contacting phase. Achieving chemical control over the energetics at semiconductor surfaces promises to provide a means of tuning the band-edge energetics to form optimized junctions with a desired material. Si(111) surfaces functionalized with 3,4,5-trifluorophenylacetylenyl (TFPA) groups were characterized by transmission infrared spectroscopy, X-ray photoelectron spectroscopy, and surface recombination velocity measurements. Mixed methyl/TFPA-terminated (MMTFPA) n- and p-type Si(111) surfaces were synthesized and characterized by electrochemical methods. Current density versus voltage and Mott–Schottky measurements of Si(111)–MMTFPA electrodes in contact with Hg indicated that the barrier height, Φb, was a function of the fractional monolayer coverage o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.