Abstract

In seedlings of the Scots pine (Pinus sylvestris L.), alanine aminotransferase (AlAT EC 2.6.1.2.) is present in the shoot and in the primary root but most activity is found in the cotyledons. During the experimental period (from 6 to 12 d after sowing), AlAT activity increased steadily. Anion exchange chromatography and native polyacrylamide gel electrophoresis were used to show that AlAT activity in extracts from cotyledons is associated with two isoforms of the enzyme. One isoform (AlAT 1) dominated in the cotyledons of lightgrown seedlings, but was absent from primary roots. Its accumulation was strongly increased by light, and both phytochrome and cryptochrome were shown to be involved in this effect. Results of experiments using dichromatic irradiation indicate that cryptochrome acts indirectly by establishing responsiveness towards phytochrome. When plastids were damaged by photooxidation, the accumulation of AlAT 1 decreased; however, AlAT 1 which had accumulated before the onset of photooxidative treatment seemed to remain undamaged. Therefore, and because of the absence of AlAT 1 from primary roots, it is suggested that this isoform is localized in leaf peroxisomes. The isoform AlAT 2 is the only one found in primary roots, and the predominant one in the cotyledons of dark-grown seedlings. It is unaffected by light. Upon photodestruction of plastids, a pronounced increase of its activity was found. This is taken as evidence that AlAT 2 is a cytosolic enzyme. Total AlAT activity in cotyledons was unaffected by feeding nitrate to the seedlings; supplying exogenous ammonium led to a considerably slower accumulation of AlAT compared with water controls. In contrast, AlAT accumulation in the primary roots was augmented by up to 45% if nitrogenous ions were supplied, ammonium being more effective than nitrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call