Abstract

The well-known Cucker-Smale model is a microscopic system reproducing the alignment of velocities in a group of autonomous agents. Here, we focus on its mean-field limit, which we call the continuous Cucker-Smale model. It is a transport partial differential equation with nonlocal terms. For some choices of the parameters in the Cucker-Smale model (and the continuous one), alignment is not ensured for some initial configurations, therefore it is natural to study the enforcing of alignment via an external force. We provide a control strategy enforcing alignment for every initial data and acting only on a small portion of the crowd at each time. This is an adapted version of the sparse control for a finite number of agent, that is the constraint of acting on a small number of agents at each time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.