Abstract

Wear of materials used in artificial joints is a common failure mode of artificial joints. A low wear rate for implants is believed to be critical for extending implant service time. We developed a carbide-coated Co-Cr-Mo implant alloy created in plasma of methane and hydrogen mixed gas by a microwave plasma-assisted surface reaction. The carbide-coated Co-Cr-Mo has a unique "brain coral-like" surface morphology and is much harder than uncoated Co-Cr-Mo. The effect of plasma processing time and temperature on the surface morphology of the top carbide layer was studied toward optimizing the surface coating. The ratios of average roughness, Ra, core roughness, Rk, and summation of core roughness, reduced peak height (Rpk) and reduced valley depth (Rvk), Rk+Rpk+Rvk, for the 6-h/985 degrees C coating to those for the 0.5-h/985 degrees C coating were 1.9, 1.7, and 1.9, respectively. The ratios of Ra, Rk, and Rk+Rpk+Rvk for the 4-h/1000 degrees C coating to those for the 4-h/939 degrees C coating were 2.3, 2.3, and 2.0, respectively. With the proper combination of plasma processing time and temperature, it may be possible to change the thickness of the peak-valley top cluster by fourfold from approximately 0.6 microm to approximately 2.5 microm. Finally, the growth mechanism of the carbide layers on Co-Cr-Mo was discussed in the context of atomic composition analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call