Abstract

Data from a laboratory simulator, TEXTOR, JET, and other tokamaks are used to show that oxygen and carbon surface impurities on the walls of plasma chambers are interrelated and can be manipulated by controlling the composition of the gas used for plasma surface conditioning. Not only can oxygen be reduced to low levels, but carbon (and other elements) can be either removed or deposited and reacted with the substrate. In the case of carbon deposits, a thin metal-carbide layer can be formed or thicker deposits of elemental carbon can be made. Surface compositions can be reproduced easily and reversibly in a controlled way. Furthermore, these composition changes can alter the hydrogen recycling speed and plasma impurity levels by an order of magnitude or more.In the simulator we have related gas composition to surface composition changes and resulting recycling behavior. Surface oxygen levels can be reduced from 30 to less than 3 at.% in less than 45 min of discharge cleaning. Carbon and oxygen levels as well as those of other surface active impurities are interrelated. Examples are shown and discussed. Comparisons are made to show the changes in the hydrogen recycling behavior caused by various surface preparations (compositions).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call