Abstract

In this presentation, we propose a novel design of elastic metamaterial that possesses unique anisotropic mass density and hyperbolic dispersion, which enables subwavelength-scale flexural wave manipulation. The metamaterial unit cell is inspired by kirigami, an ancient art of paper cutting and folding. A three-dimensional kirigami microstructure can be obtained by simply cutting and folding a thin metallic plate. By attaching the resonant kirigami microstructures periodically on the top of a host plate, a hyperbolic metamaterial plate can be manufactured without any perforation that degrades the strength of the pristine plate. A theoretical model based on the classic plate theory and mass-spring model is developed to understand the working mechanism of the elastic metamaterial. Dispersion curves are obtained by using an extended plane wave expansion method. An anisotropic effective mass density tensor is retrieved based on effective medium theory, which explains the different couplings between the local resonance of kirigami microstructure and the global flexural wave propagations in the host plate along two in-plane principal directions. Finally, numerical simulation on an elastic hyperlens is conducted to demonstrate the subwavelength-scale flexural wave control and super-resolution imaging abilities. The advantages of the proposed kirigami-based elastic hyperbolic metamaterial are twofold: (i) simple manufacturing process without perforation in the pristine plate and (ii) subwavelength flexural wave manipulation providing a high signal-to-noise ratio in plate-like engineering structures. Therefore, the proposed elastic hyperbolic metamaterial could be highly promising for high resolution damage imaging in nondestructive evaluation and structural health monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.