Abstract

AbstractThe Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) exhibits a large spread in the simulated climate across models, including in profiles of buoyancy and relative humidity. Here we use simple theory to understand the control of stability, relative humidity, and their responses to warming. Across the RCEMIP ensemble, temperature profiles are systematically cooler than a moist adiabat, and convective available potential energy (CAPE) increases with warming at a rate greater than that expected from the Clausius‐Clapeyron relation. There is higher CAPE (greater instability) in models that are on average moister in the lower‐troposphere. To more explicitly evaluate the drivers of the intermodel spread, we use simple theory to estimate values of entrainment and precipitation efficiency (PE) given the simulated values of CAPE and lower‐tropospheric relative humidity. We then decompose the intermodel spread in CAPE and relative humidity (and their responses to warming) into contributions from variability in entrainment, PE, the temperature of the convecting top, and the inverse water vapor scale height. Model‐to‐model variation in entrainment is a dominant source of intermodel spread in CAPE and its changes with warming, while variation in PE is the dominant source of intermodel spread in relative humidity. We also decompose the magnitude of the CAPE increase with warming and find that atmospheric warming itself contributes most strongly to the CAPE increase, but the indirect effect of increases in the water vapor scale height with warming also contribute to increasing CAPE beyond that expected from Clausius‐Clapeyron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call