Abstract

Air turbine spindles with aerostatic bearings are widely used in ultraprecision machining equipment. Ultraprecision grinding processes using air turbine spindles with aerostatic bearings include constant-pressure dry lapping of nano-polycrystalline diamond (NPD) tools and ultraviolet irradiation polishing of chemical vapor deposition diamond films. In the dry lapping of NPD tools, it is necessary to achieve constant-pressure grinding while flexibly adjusting the contact force between the NPD tool and the truer fixed on the end face of the aerostatic spindle to form a nose bite with a cutting-edge rounding radius, R, of 0.1 nm. However, it is common for operators to manually adjust the cut depth and the air pressure supplied to the aerostatic bearing by relying on the noise and rotation speed during machining. Moreover, aerostatic spindles without a control mechanism, such as active bearings, are widely used because of their low costs and versatility. For several years, the authors have been developing a method to control air bearing stiffness by controlling the bearing supply pressure with high speeds and precision using a high-precision quick response regulator for aerostatic spindles without a control mechanism, such as active bearings. In this study, the compliance control (control of spindle position and stiffness) of aerostatic bearings was investigated using the proposed method, and the effectiveness of the method to ultraprecision grinding applications was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.