Abstract

The spin injection and accumulation in metallic lateral spin valves with transparent interfaces are studied using dc injection current. Unlike ac-based techniques, this allows the investigation of the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high-current densities are injected ($\ensuremath{\sim}80--105\text{ }\text{K}$ for $1--2\ifmmode\times\else\texttimes\fi{}{10}^{7}\text{ }\text{A}\text{ }{\text{cm}}^{\ensuremath{-}2}$), strongly affecting the spin accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.