Abstract

The mammalian thalamus is the gateway to the cortex for most sensory modalities. Nearly all thalamic nuclei also receive massive feedback projections from the cortical region to which they project. In this study, the spatiotemporal properties of synchronized thalamic spindle oscillations (7 to 14 hertz) were investigated in barbiturate-anesthetized cats, before and after removal of the cortex. After complete ipsilateral decortication, the long-range synchronization of thalamic spindles in the intact cortex hemisphere changed into disorganized patterns with low spatiotemporal coherence. Local thalamic synchrony was still present, as demonstrated by dual intracellular recordings from nearby neurons. In the cortex, synchrony was insensitive to the disruption of horizontal intracortical connections. These results indicate that the global coherence of thalamic oscillations is determined by corticothalamic projections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.