Abstract

We perform an analytic and numerical study of a system of partial differential equations that describes the propagation of nerve impulses in the heart muscle. We show that, for fixed parameter values, the system has infinitely many distinct stable wave solutions running along the spatial axis at arbitrary velocities and infinitely many distinct modes of space-time chaos, where the bifurcation parameter is the velocity of running wave propagation along the spatial axis, which does not explicitly occur in the original system of equations. We suggest an algorithm for controlling the space-time chaos in the system, which permits one to stabilize any of its unstable periodic running waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.