Abstract

The control of small-scale helicopter is a MIMO problem. To use the classical control approach to formally solve a MIMO problem, one needs to come up with multi-dimensional Root Locus diagram to tune the control parameters. The problem with the required dimension of the RL diagram for MIMO design has forced the design procedure of classical approach to be conducted in cascaded multi-loop SISO system starting from the innermost loop outward. To implement this control approach for a helicopter, a pitch and roll attitude control system is often subordinated to a, respectively, longitudinal and lateral velocity control system in a nested architecture. The requirement for this technique to work is that the inner attitude control loop must have a higher bandwidth than the outer velocity control loop which is not the case for high performance mini helicopter. To address the above problems, an algebraic design approach is proposed in this work. The designed control using s-CDM approach is demonstrated for hovering control of small-scale helicopter simultaneously subjected to plant parameter uncertainties and wind disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.