Abstract

Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25–30%, P<0.05) in RM than in LM mitochondria, whereas no difference was observed for basal respiration. Based on mitochondrial enzyme activities (cytochrome c oxidase [COX], F0F1-ATPase, mitochondrial creatine kinase [mi-CK]), the higher ADP-stimulated respiration rate of RM mitochondria appeared mainly related to a higher maximal oxidative capacity, without any difference in the maximal phosphorylation potential. Mitochondrial K m for ADP was similar in RM (4.4±0.9 μM) and LM (5.9±1.2 μM) muscles ( P>0.05) but the inhibitory effect of ATP was more marked in LM ( P<0.01). These findings demonstrate that the regulation of mitochondrial respiration by ATP differs according to muscle contractile type and that absolute muscle oxidative capacity not only relies on mitochondrial density but also on mitochondrial functioning per se.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.