Abstract

Future robotic vehicles will perform challenging tasks in rough terrain, such as planetary exploration and military missions. Rovers with actively articulated suspensions can improve rough-terrain mobility by repositioning their center of mass. This paper presents a method to control actively articulated suspensions to enhance rover tipover stability. A stability metric is defined using a quasi-static model, and optimized on-line. The method relies on estimation of wheel-terrain contact angles. An algorithm for estimating wheel-terrain contact angles from simple on-board sensors is developed. Simulation and experimental results are presented for the Jet Propulsion Laboratory Sample Return Rover that show the control method yields substantially improved stability in rough-terrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.