Abstract
The regulation of ribosome synthesis has been investigated for nearly five decades. In earlier studies, the control of rRNA synthesis in bacteria was found to be dependent on nutrient composition of the growth media or cell growth rates, and these observations led to the growth rate-dependent regulation model. Also developed were stringent control, feedback ribosome synthesis, passive regulation, and antitermination models. Current evidence indicates that upstream (UP) element, molecular effectors, ppGpp and iNTP (initiating nucleoside triphosphate), and trans-acting proteins, Fis and H-NS, play important roles in the control of rRNA synthesis in response to changing nutritional environments. The mechanisms for the ribosome feedback regulation, and growth rate-dependent controls of rRNA synthesis remain to be determined despite numerous investigations. r-protein synthesis can be controlled by translational coupling, translation repression, or premature transcription termination. In Synechococcus, a photoautotroph, ribosome synthesis occurs early in the cell cycle as programmed events under conditions that support balanced growth. Periods of r-protein synthesis occur before rRNA synthesis periods, and rRNA synthesis is stimulated by a light-activated gene regulatory protein. These observations suggest that gene regulatory proteins are involved in the coordinate regulation of ribosome assembly in Synechococcus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.