Abstract

Oligodeoxyribonucleoside methylphosphonates contain nonionic 3'-5' linked methylphosphonate internucleotide bonds in place of the normal charged phosphodiester linkage of natural nucleic acids. These oligomers are resistant to nuclease hydrolysis, can pass through the membranes of mammalian cells in culture and can form stable hydrogen-bonded complexes with complementary nucleotide sequences of cellular RNAs such as mRNA. The oligomers are readily synthesized on insoluble polymer supports. Their chainlength and nucleotide sequence can be determined by chemical sequencing procedures. Oligonucleoside methylphosphonates which are complementary to the 5'-end, initiation codon region, or coding region of rabbit globin mRNA inhibit translation of the mRNA in rabbit reticulocyte lysates and globin synthesis in rabbit reticulocytes. This inhibition is due to the interaction of the oligomers with mRNA and the extent of inhibition is influenced by the secondary structure of the mRNA and the location of oligomer binding site on the mRNA. Oligomers complementary to the initiation codon regions of N, NS and G protein mRNAs of Vesicular stomatitis virus (VSV) inhibit virus protein synthesis in VSV-infected Mouse L-cells. These oligomers do not affect L-cell protein synthesis or growth. Virus protein synthesis and growth can also be selectively inhibited by oligonucleoside methylphosphonates which are complementary to the donor or acceptor splice junctions of virus pre mRNA. An oligomer complementary to the donor splice junction of SV40 large T antigen mRNA inhibits T-antigen synthesis in SV40-infected African green monkey kidney cells but does not inhibit overall cellular protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call